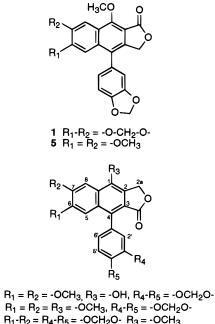
Antiplatelet Arylnaphthalide Lignans from Justicia procumbens

Chien-Chih Chen,* Wen-Chi Hsin, Feng-Nien Ko,[†] Yu-Lin Huang, Jun-Chih Ou, and Che-Ming Teng[†]


National Research Institute of Chinese Medicine, No. 155-1, Sec 2, Li Nung St. Peitou, Taipei, Taiwan, Republic of China, and Department of Pharmacology, National Taiwan University, Taipei, Taiwan, Republic of China

Received May 9, 1996[®]

Fractionation of the EtOH extract of *Justicia procumbens*, guided by antiplatelet bioassay, led to the isolation of nine known arylnaphthalide lignans, neojusticin A (1), justicidin B (2), justicidin A (3), taiwanin E methyl ether (4), neojusticin B (5), chinensinaphthol methyl ether (6), taiwanin E (8), chinensinaphthol (9), and diphyllin (10), and a new arylnaphthalide lignan that was characterized by spectral means as 4'-demethylchinensinaphthol methyl ether (7). Compounds 1, 2, 4, and 8 significantly inhibited platelet aggregation.

The whole plant of Justicia procumbens L. (Acanthaceae) is used as an herbal remedy for the treatment of fever, pain due to pharyngolaryngeal swelling,¹ and cancer.² In Taiwan, the juice of this plant has also been used as a fish-killing material. Previous phytochemical studies on this plant have afforded arylnaphthalide lignans.^{3–5} Recently, we have been searching for pharmacologically active principles among medicinal plants used in traditional medicine in Taiwan,⁶⁻⁹ and we found that the EtOH extract of the whole plant of *J. procumbens*, at 20 μ g/mL, exhibited 50% inhibitory activity to the arachidonic acid (AA)-induced aggregation of rabbit platelets. This activity was followed in a bioassaydirected fractionation. The EtOH extract was extracted with CHCl₃ to give an active CHCl₃-soluble fraction (5 μ g/mL, 88% inhibition to AA). This was chromatographed on a Si gel column and eluted successively with *n*-hexane, CHCl₃, CHCl₃-Me₂CO (1:1), and Me₂CO to give an active fraction (1 μ g/mL, 82% inhibition to AA) eluted with CHCl₃. This active fraction was further separated by preparative TLC, Sephadex LH-20, and HPLC to give 10 arylnaphthalide lignans, neojusticin A (1),^{3,5,10} justicidin B (2),^{3,4} justicidin A (3),³⁻⁵ taiwanin E methyl ether (4),³ neojusticin B (5),^{3,5,10} chinensinaphthol methyl ether (6),¹¹ 4'-demethylchinensinaphthol methyl ether (7), taiwanin E (8), 12 chinensinaphthol (9),¹¹ and diphyllin (10).⁵ Among these, compound 7 is a novel natural product. Compounds 6, 8, and 9 were isolated for the first time from Justicia spp. The known lignans were identified by spectral analyses and comparison of their data (MS, NMR, IR) with published reports.^{3-5,11,12}

4'-Demethylchinensinaphthol methyl ether (7) was isolated as colorless prisms, mp 240–242 °C, and its high-resolution mass spectrum indicated a molecular formula $C_{21}H_{16}O_7$ [M]⁺ at m/z 380.0901. The IR spectrum contained bands associated with an aromatic γ -lactone (1755 cm⁻¹) and a methylenedioxy ether (933 cm⁻¹). The ¹H NMR spectrum contained the signals of five aromatic protons [δ 7.57 (s), 7.09 (s), 7.05 (d, J = 8.4 Hz), and 6.82 (2H, m)], a methylenedioxy group [δ 6.08 (2H, s)], a γ -lactone methylene group [δ 5.51 (2H, s)], a hydroxy group [δ 5.74 (s)], and two methoxyl

2

10 $R_1 = R_2 = -OCH_3, R_3 = -OH, R_4 - R_5 = -OCH_2O-$

groups (δ 4.08 and 3.87). The signal due to the γ -lactone methylene protons appeared at δ 5.51, indicating that it was a 1-aryl-2,3-naphthalide lignan.^{12,13} These observations implied a substitution pattern similar to that of chinensinaphthol (9).¹¹ The location of the methoxyls in 7 was confirmed by NOE measurements. Irradiation of the 1-OCH₃ at δ 4.08 enhanced the signals at δ 7.57 (H-8) and 5.51 (H₂-2a) by 3% and 5%, respectively. Irradiation of the 3'-OCH₃ at δ 3.87 enhanced the signal at δ 6.82 (H-2'). On the basis of the above results, the structure of 4'-demethylchinensinaphthol methyl ether was assigned as 7.

With the exception of 7 and 9, which were unavailable in sufficient quantity, these lignans were tested for their *in vitro* antiplatelet activity on rabbit platelets against AA-induced aggregation. As shown in Table 1, all of the lignans tested were less active than indomethacin. However, compounds 1, 2, 4, and 8 were significantly more active than aspirin. The rank order of antiplatelet potency was 1 > 4 > 2 = 8.

^{*}To whom correspondence should be addressed. Tel.: 886-2-8201999 ext. 6701. Fax: 886-2-8250743.

National Taiwan University.

[®] Abstract published in *Advance ACS Abstracts,* November 1, 1996.

Table 1. Effect of Compounds, Isolated from J. procumbens, on AA-Induced Platelet Aggregation to Rabbit Platelet Suspension^a

compounds	IC ₅₀ (µM)
neojusticin A (1)	1.1 ± 0.3
justicidin B (2)	8.0 ± 1.2
justicidin A (3)	31.7 ± 4.5
taiwanin E methyl ether (4)	1.7 ± 0.3
neojusticin B (5)	$\textbf{50.8} \pm \textbf{8.3}$
chinensinaphthol methyl ether (6)	18.8 ± 3.0
taiwanin E (8)	8.0 ± 1.1
diphyllin (10)	>100
aspirin ^b	20.3 ± 2.1
indomethacin ^b	0.21 ± 0.04

^a Platelets were preincubated with various concentrations of each compound or the solvent (0.5% DMSO, control) at 37 °C for 3 min, and then AA (100 μ M) was added to trigger the reaction. The activity of antiplatelet aggregation (%) was calculated by the following equation: antiplatelet aggregation (%) = [1 - (platelet aggregation)]aggregation potency of sample/platelet aggregation potency of control)]100. Then, the IC₅₀ value of each compound was calculated and shown as mean \pm SD (n = 3-6). ^b Positive control standard.

Experimental Section

General Experimental Procedures. Melting points were measured on a Yanaco micro-melting point apparatus and are uncorrected. The IR spectra were recorded on a JASCO-IR-100 spectrometer. ¹H NMR spectra were taken on a Varian Gemini 200 FT-NMR. EIMS spectra were recorded on a JEOL JMS-HX100 spectrometer. HPLC was carried out using a UV detector (254 nm) and a Cosmosil 5C18-AR (5 μ m, 10 \times 250 mm) column with a solvent ($CH_3CN-H_2O = 1:1$) flow rate of 2 mL/min.

Plant Material. The whole plants of J. procumbens L. were collected in July 1993 at Yang-Ming Mountain, Taipei, under the direction of Mr. M. T. Kao of the National Research Institute of Chinese Medicine, A voucher specimen is maintained in the herbarium of the Research Institute of Chinese Medicine.

Extraction and Isolation. Air-dried whole plant of J. procumbens (3.0 kg) was chipped and refluxed with 95% EtOH (10 L \times 3). After filtration and evaporation of the EtOH at reduced pressure to afford a brown syrup (232 g), the EtOH extract was mixed thoroughly with CHCl₃. Filtration and evaporation of the CHCl₃ then gave a CHCl₃-soluble fraction (54 g). The CHCl₃-soluble fraction (54 g) was chromatographed over a Si gel (70-230 mesh, 1.5 kg) column that was eluted successively with *n*-hexane, CHCl₃, CHCl₃–Me₂CO (1:1), and Me₂CO to give an active fraction (4.1 g) that eluted with CHCl₃. This active fraction was further separated by preparative TLC (Si gel, $CH_2Cl_2-Me_2CO = 25:1$). Six blue fluoresent zones were detected by 365 nm UV light. Material from the first zone $(R_f 0.74)$ was recrystallized with MeOH to give neojusticin A (1, 12.4 mg). Material from the second zone (R_f 0.66) was further separated by HPLC to give justicidin B (2, 11.3 mg, $t_{\rm R} = 28.01$ min), justicidin A (**3**, 8.1 mg, $t_{\rm R} = 34.18$ min), taiwanin E methyl ether (4, 4.6 mg, $t_{\rm R}$ = 44.43 min), and

neojusticin B (5, 10.6 mg, $t_{\rm R} = 50.03$ min). Material from the third zone ($R_f 0.55$) was subjected to Sephadex LH-20 CC (MeOH) to obtain chinensinaphthol methyl ether (6, 3.3 mg). Material from the fourth zone (R_f 0.41) was further purified by HPLC to give 4'-demethylchinensinaphthol methyl ether (7, 1.4 mg). Material from the fifth zone ($R_f 0.30$) was purified by Si gel (230– 400 mesh, $CH_2Cl_2-Me_2CO = 30:1$) and Sephadex LH-20 CC (MeOH) to give taiwanin E (8, 2.0 mg). Material from the sixth zone ($R_f 0.20$) was further separated by HPLC to give chinensinaphthol (9, 2.1 mg, $t_{\rm R} = 18.98$ min) and diphyllin (**10**, 2.4 mg, $t_{\rm R} = 20.50$ min).

4'-Demethylchinensinaphthol methyl ether (7): colorless prisms (MeOH); mp 240-242 °C; EIMS (70 ev) m/z [M]⁺ 380 (100), 365 (5), 337 (10), 305 (50); HREIMS *m*/*z* 380.0901 (C₂₁H₁₆O₇ requires 380.0895); IR (KBr) $v_{\rm max}$ 3300, 1755, 1610, 933 cm⁻¹; ¹H NMR (CDCl₃) δ 3.87 (3H, s, 3'-OCH₃), 4.08 (3H, s, 1-OCH₃), 5.51 (2H, s, H₂-2a), 5.74 (1H, s, -OH), 6.08 (2H, s, -OCH₂O-), 6.82 (2H, m, H-2',6'), 7.05 (1H, d, J = 8.4 Hz, H-5'), 7.09 (1H, s, H-5), 7.57 (1H, s, H-8).

Platelet Aggregation. Washed platelets were obtained from fresh rabbit blood according to the washing procedures described previously.¹⁴ Aggregation was measured by an aggregometer (Chrono-Log Co., USA) using the turbidimetric method¹⁵ and assigned the absorbance of platelet suspension as 0% aggregation and the absorbance of platelet-free Tyrode solution as 100% aggregation. The final concentration of the solvent DMSO was fixed at 0.5%, which did not affect the aggregation. Aspirin and indomethacin were used as positive controls.

Acknowledgment. This work was supported by a research grant of the National Science Council of Republic of China (NSC 85-2331-B-077-003).

References and Notes

- (1) Kan, W. S. Pharmaceutical Botany: National Research Institute of Chinese Medicine: Taiwan, R.O.C., 1981; p 513.
- (2)Hsu, H. Y. Treating Cancer with Chinese Herbs, Oriental Healing Arts Institute: Los Angeles, CA, 1982; p 238. Ohta, K.; Munakata, K. *Tetrahedron Lett.* **1970**, 923–925. Okigawa, M.; Maeda, T.; Kawano, N. *Chem. Pharm. Bull.* **1970**,
- (3)
- (4) 18. 862-863.
- Fukamiya, N.; Lee, K. H. J. Nat. Prod. 1986, 49, 348-350. (5)(6)Teng, C. M.; Yu, S. M.; Chen, C. C.; Huang, Y. L.; Huang, T. F.
- Thromb. Res. 1990, 59, 121-130.
- (7)Chen, C. C.; Huang, Y. L.; Ou, J. C.; Su, M. J.; Yu, S. M.; Teng, C. M. *Planta Med*. **1991**, *57*, 406–408.
- Chen, C. C.; Wu, L. G.; Ko, F. N.; Teng, C. M. J. Nat. Prod. 1994, (8)57, 1271-1274.
- Chen, C. C.; Lin, C. F.; Huang, Y. L.; Ko, F. N.; Teng, C. M. J. Nat. Prod. **1995**, *58*, 1423–1425. (9)
- (10) Okigawa, M.; Maeda, T.; Kawano, N. Tetrahedron 1970, 26, 4301-4305.
- (11) Ghosal, S.; Chauhan, R. P. S.; Srivastava, R. S. Phytochemistry 1974, 13, 1933-1936.
- (12) Horii, Z.; Tsujiuchi, M.; Momose, T. Tetrahedron Lett. 1969, 1079-1082
- (13) Sheriha, G. M.; Amer, K. M. A. Phytochemistry 1984, 23, 151-153.
- (14) Teng, C. M.; Chen, W. Y.; Ko, W. C.; Ouyang, C. Biochim. Biophys. Acta 1987, 924, 375–382.
- (15) O'Brien, J. R. J. Clin. Path. 1962, 15, 452-455.

NP960443+